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ABSTRACT 

 A mathematical continuum theory is developed to describe the electromechanical 
behavior of dielectric and piezoelectric solids containing imperfections.  The macroscopic 
distortion field consists of recoverable elasticity, deviatoric plasticity arising from dislocation 
glide, and volumetric deformation from vacancies.  A connection on the spatial manifold of 
deformed lattice vectors describes gradients of stretch and rotation at the microscale caused 
by various lattice defects.  It is shown that parallel transport of a lattice director vector with 
respect to this connection about a closed loop yields a discontinuity with contributions from 
the torsion of the connection (physically, from dislocations) and curvature (physically, from 
domain walls and vacancy gradients).  Classical balance laws of electrostatics and mass and 
momentum conservation are implemented.  A free energy function dependent upon lattice 
distortion, polarization, temperature, and defect densities is suggested.  Thermodynamically 
consistent kinetics relations for dislocation glide and vacancy diffusion are then derived, with 
the chemical potential for the latter depending upon defect density, electric potential, 
hydrostatic pressure, and elastic energy density.  Vacancy migration and mass rearrangement 
at the free surface of the substance are also considered explicitly. 

Keywords:  dielectric, piezoelectric, diffusion, vacancy, dislocation, disclination. 
 
1. INTRODUCTION 

 Dielectric and piezoelectric solids are used in a great variety of solid state electronic 
devices owing to their electrical and mechanical properties.  In pure dielectric materials, the 
mechanical and electrostatic behaviors are generally decoupled, whereas in piezoelectric 
media they are not.  In the latter, mechanical strains may induce an electric field, and vice-
versa.  Ferroelectric media undergo a change in crystal structure with temperature, and may 
exhibit dielectric or piezoelectric effects as well as spontaneous polarization depending upon 
crystallographic phase.  Examples of ferroelectrics encountered in the semiconductor industry 
include the crystalline ceramics PZT (Lead Zirconate Titanate) and BST (Barium Strontium 
Titanate).  Defects affect the reliability of many ferroelectric devices, including capacitors, 
high-frequency sensors, and gate dielectric semiconductors, notably those of thin film 
geometry [1, 2].  During processing, through heat treatments or addition of doping chemicals, 
defect densities and excess electric charges may be controlled [3].  Perhaps the most naturally 
abundant piezoelectric material is crystalline quartz (Silicon Dioxide).  Quartz exhibits 
electromechanical anisotropy, with historic applications in pressure transducers, capacitors, 
and gate dielectrics [4].  Quartz is also a fundamental constituent of granite, as found in urban 
construction applications (e.g., buildings) and encountered in geological settings [5, 6]. 
 Physical models are needed in order to predict how existing dielectric and 
piezoelectric materials respond to new environments, to design engineering systems 
comprised of such materials, and to tailor new materials (e.g. chemically and/or micro-
structurally) with improved combinations of properties.   Noteworthy continuum descriptions 
of electromechanical behavior were set forth in the mid-twentieth century [7-10].  More 
recently, theories based on thermodynamics of energy minimization have been developed to 

 1



predict domain patterning in ferroelectric media [11], and vacancy diffusion and surface 
rearrangement in dielectric materials [12, 13]. 
 Historically, defects have not been considered explicitly in continuum theories of such 
materials [7-10], even though their presence may dominate material behavior and hence the 
performance of the engineering system.  In particular, charged vacancies are thought to affect 
leakage current characteristics of BST thin films [3, 13].  Misoriented, polarized domains are 
thought to influence the macroscopic dielectric constant of BST, and domain walls may act as 
a source or sink for charges and point and line defects.  Vacancy migration and ion tunneling 
are important phenomenon in quartz resonators [4].  Dislocations have been found in 
crystalline quartz [14] and their motion and effects on properties have been reported [5, 6, 15-
17].  Such imperfections affect anisotropy, piezoelectric response, and mechanical strength.   
 Here the kinematic description of defects relies on methods of differential geometry: 
the purely mathematical basis is given in [18, 19], while recent applications to mechanics of 
solids can be found in [20, 21].  In the present work, dislocations, disclinations (i.e. rotational 
discontinuities) and point defects are described via a multiscale continuum framework 
following [22].  The disclination concept, used previously to describe subgrains in severely 
deforming metallic crystals [23], is newly applied here to account for lattice rotation across 
domain walls in polarizable crystals.  The description relies on many ideas proposed in early 
field theories of continuously distributed lattice defects [24-27].     
 In the present theory, the mechanical deformation is considered from two 
perspectives.  From the macroscopic perspective, the solid deforms according to the 
displacement gradient or distortion, with contributions from elasticity, plasticity, and 
porosity.  Here, distortions are assumed small, unlike in [22, 23], as fracture is thought likely 
occur in the relatively brittle materials of interest prior to attainment of large deformations.  
From the microscopic perspective, however, deformations may be large in the vicinity of 
defects, including significant rotations across domain walls.  A linear connection is defined, 
accounting for stretch and rotation gradients of the lattice distinct from those induced by the 
macroscopic distortion.  The total discontinuity or burgers vector in the lattice arising from 
this connection is shown to consist of contributions from dislocations, disclinations, and 
vacancy gradients.  Bulk and surface fluxes of vacancies compatible with mass conservation 
principles are introduced [12, 13, 28].  Momentum and energy conservation laws are defined, 
along with standard relations from electrostatics [7]. Thermodynamic dependencies and 
kinetic relations are then postulated, describing, respectively, the state of the substance and 
the motion of defects.  A proof is given that such relations are consistent with laws of 
thermodynamics, inspired by procedures of [29-31].  Finally, a specific functional form is 
suggested for the free energy density of dielectric and piezoelectric bodies, leading to a 
particular kinetic law for charged vacancy diffusion.   
 
2. KINEMATICS AND BALANCE LAWS 

 The mechanical and electrical displacement vectors,  and , are defined by au aD

 0
a au x xa= − , (1) 

 0
a aD Eε aP= + , (2) 

where ax  and 0
ax  are deformed and initial material coordinates,  is the polarization 

defined only within the solid domain, 

aP

0ε  is the permittivity of free space, and  is the 
electric field satisfying  

aE

 ,aE aφ= − , (3) 
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with φ  the electric potential [7].  Indices in Roman font span three spatial coordinates, and 
subscripted commas denote spatial derivatives with respect to these coordinates.  Polarization 
implies a relative displacement among charged ions comprising the primitive unit cell of the 
lattice.  The displacement gradient is decomposed additively as 
 
 ,

E P
a b ab ab abu Vγ γ γ= + + , (4) 

with E
abγ  the recoverable lattice distortion, P

abγ  the plastic distortion from dislocation glide, 
and  V

abγ  expansion or contraction from point or volumetric defects, the latter two satisfying  
 
 ( ) . 0P a

aγ = ,                               ( ) ( ). / 3V a a
b .bγ χ δ= , (5) 

where χ  is the volume fraction of defects and .
a
bδ  is Kronecker's delta.  Plastic flow is 

dictated by [23, 32, 33] 
 ( ) ( ) ( )k k kP

ab a b
k

s mγ ν=∑ , (6) 

where ν  is the slip rate on glide system k, with slip direction  and slip plane normal .  
Note that  and  are orthogonal by definition.  Defects, polarization, and slip plane 
geometry are illustrated in Fig. 1. 

as bm

as bm

 

 
 

Fig. 1.  Material element with point and line defects, polarized domains, and slip plane. 
 
 
 Diffusion of point defects is specialized here to vacancies.    Let 

 χ αξ= , (7) 

where ξ  is the number of vacancies per unit volume and α is a positive constant.  Then 
vacancy conservation, in the absence of generation or annihilation, requires 
 
 .,

a
aQξ = − , (8) 

where  is the bulk flux of vacancies.  Surface fluxes are also admitted, described by the 
vector 

iQ
qα , where Greek indices span two surface coordinates.  Let  denote the normal 

velocity of the surface, which may contract as vacancies are released.  Denote by M the total 
mass of the system, with actual and referential (undeformed and defect-free) mass densities 

a

ρ  and 0ρ .  Conservation at surface s of the system requires a null sum of rates of change in 
mass from surface expansion/contraction and from bulk and surface fluxes of vacancies:  
 
 ( ) ( )0 . .,/ 1 Ea a

a aM a ds Q n q dsα
αρ χ γ α= − − + + =∫ ∫ 0 , (9) 

leading to [12, 13] 
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 ( ) ( ), / 1a
aa Q n qα

α .
Ea
aα χ γ= − + − − . (10) 

Bulk and surface coordinates and fluxes are illustrated in Fig. 2. 

 

 
Fig. 2.  Defect fluxes and coordinate systems. 

  

 The lattice deformation .
a
bA  is introduced as 

 . . .
a a E a V
b b bA .

a
bδ γ γ= + + , (11) 

and includes effects of elasticity and stress-free volumetric expansion, but not dislocation 
glide, as the latter presumably does not alter the crystal structure once dislocations have 
convected through the material [22, 23].  Lattice director vectors  (see Fig. 1) are 
deformed via (11) to the vectors 

ad
1

.
b

b aA−d , and the corresponding metric for their change in 
length is given by the inner product 
 1 1 1

. . . .
c d c

ab a c b d a cd bC A A A Aδ 1d− − −= =d di −

aϒ δ

, (12) 

where the  constitute an initially orthogonal triad attached to each unit cell of the lattice, 
and do not necessarily correspond to interatomic bond vectors.  Spatial gradients on the 
manifold of lattice directors are described by the covariant derivative [18, 19, 22]  

ad

 
 , (13) ..

,
c

b a a b ba cΓ∇ = −d d d

where Christoffel symbols of the connection  

 . (14) .. 1 .. .
. . ,

a a d a
cb d b c cb c bA AΓ Ξ−= + +

Above,  and ..a
cbΞ cϒ  are additional degrees of freedom accounting for rotation and stretch 

gradients, respectively, due to surface and point defects.  Covariant versions of these 
quantities are  
 ,                [ ]

..d
cba cb da c baCΞ = Ξ Ξ= ( )

.d
c b da c baC Cϒ δ ϒ= , (15) 

where bracketed indices are anti-symmetric and indices in parentheses are symmetric.  The 
nonvanishing components of the torsion T and curvature R tensors of the connection (14) are 
then found as [19, 22, 27]: 
 
 [ ] [ ] [ ] [ ]

.. 1 .. .
. . ,2 2 2a a d a
dcb b c cb c bT A A aΞ ϒ δ−= + + , (16) 

 , (17) [ ][ ] [ ][ ] [ ] [ ]
..2 e

ab cd c d ba cd e baR Ξ= ∇ +T Ξ

 ( )[ ] [ ] ( ) [ ] ( )
..2 e

eab cd c d ab cd abR C T Cϒ ϒ= ∇ + . (18) 

The microstretch renders the connection (14) non-metric, since 2c ab c abC Cϒ∇ = − . 
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Definition 2.1 Dislocation tensor.  The dislocation density tensor is defined in component 
form as 
 ..2 ab bcd a

dcTα ε= . (19) 

Remark.  When the microrotation and microstretch vanish, abα  in (19) agrees with the form 

given in [33] in the absence of volumetric defects: 

 1 1
. . , . , . . ,

ab bcd a e bcd a e bcd Ea
e c d e d c cA A A Aα ε ε ε γ− −= = − ≈ − d

.,b

, (20) 

and vanishes when the elastic distortion is integrable, i.e. when , where  is an 

elastic displacement.  In (19) and (20), 
.

E a Ea
b uγ = Eu

abcε  denotes the permutation operator. 
 
Definition 2.2  Disclination tensor.  The rank two disclination density is defined as 

 4 gd gba dce
abceRθ ε ε= . (21) 

Remark.  The disclination density vanishes when the microrotation .   0cbaΞ =
 
Definition 2.3 Point defect vector.  This quantity is defined by 

 ( ) [ ]
1 2e ab ecd ecd ecd f

cd fab cd c dC R T ..ϑ ε ε ϒ ε−= = ∇ + ϒ . (22) 

Remark.  The point defect vector vanishes when the microstretch 0cϒ = . 
 
Definition 2.4  Total burgers vector.  The total burgers vector over oriented lattice plane a 
from defect fields represented in (14) is given by 
 
 ( 1a ad af gd b d a

fgb d
a

b C x xα ε θ ϑ−= + +∫ )n da . (23) 

Remark.  In the absence of microstretch and microrotation, / bα  can be interpreted as the 
number of parallel dislocation lines per unit area with constant burgers vector b  
perpendicular to oriented differential area element nda . 
 
Proposition 2.5  The total burgers vector is equivalent to the following discontinuity induced 
by parallel transport of a lattice vector about an infinitesimal closed circuit c:   
 

 ( ).. ...1
2

a a a e b
bc ecb

c

b T R x dx dx= − ∧∫ c . (24) 

Proof.  The contribution from torsion and curvature to the closure failure upon parallel 
transport with respect to a connection of the form (13) is derived in Eqs. (2.19) and (4.1) and 
accompanying discussion of [19], neglecting terms of third and higher order in dx .  Then, 
from the skew-symmetry of the differential two-form , and substituting 
definitions (19)-(22) into (24), expression (23) is recovered. 

b c dbc
ddx dx n daε∧ =

 
 The remaining conservation laws are now introduced and are used in the 
thermodynamic description that follows.  Bulk mass conservation is described by 
 
 , 0a

auρ ρ+ = . (25) 
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Linear and angular momentum conservation are written 

 .., 0ab
bσ = ,                [ ] 0abσ = , (26) 

and the mechanical traction vector  is introduced.  Maxwell's equation of 
electrostatics is  

a ab
bt σ= n

 .,ˆ a
aDρ = , (27) 

with the charge density related to volumetric defects (i.e., charged vacancies) as follows: 

 ˆ ezρ ξ= , (28) 

where e  is the charge of an electron and  is the valence contribution of each defect. z
 
3.  THERMODYNAMICS AND KINETICS 

 Two energy balances are introduced.  The first is the local balance of electrostatic 
energy [7, 30]:   
 ( )0 , ˆa a a

a aE P D E ˆε φ φρ φ− + = ↔ = ρ . (29) 

The second is the global balance of the rate of external work, internal energy, and 
electrostatic field energy [13, 30]: 
 

 0 ˆ
2

a
a

d dW Udv E E dv ds
dt dt

ερ σφ= + +∫ ∫ ∫ , (30) 

where U is the internal energy per unit mass, σ̂  is the surface charge density, and the rate of 
external work W is given by  

 ˆ a a
a

dW ds t u ds Q
dt

σφ μ= + −∫ ∫ ∫ an ds , (31) 

with μ  the chemical potential for vacancy diffusion.  The Helmholtz free energy ψ , specific 
entropy η , and absolute temperature θ  are related by  
 
 Uψ ηθ= − . (32) 

Neglecting heat conduction, the global entropy inequality is written 
 
 ( )0 0dv U dvθρη ρ ψ θη≥ → − − ≥∫ ∫ ,  (33) 

and can be expressed compactly as 

 0WΦ Ω= − ≥ , (34) 

where the rate of system energy 

 ( ) 20
, ˆ

2 a
d ddv dv ds
dt dt

εΩ ρ ψ θη φ σφ= + + +∫ ∫ ∫ . (35) 

 
 The Helmholtz free energy is assumed to exhibit the following functional 
dependencies: 
 ( ), , , ,E a

ab P hψ ψ γ ξ θ= , (36) 

 6



with the generic scalar-valued function ( ), ,ab ab ah h α θ ϑ=  accounting for energetic 
contributions from defects apart from ξ . 
 
Proposition 3.1  A set of bulk thermodynamic and kinetic relations simultaneously satisfying 
(29), (34), and constitutive assumption (36) and neglecting electrostatic terms of second order 
is 

 ab
E
ab

ψσ ρ
γ
∂

=
∂

, (37) 

 a aE
P
ψρ ∂

=
∂

, (38) 

 ψη
θ

∂
= −

∂
, (39) 

 , 0a ab ab
bQ d dμ= − > , (40) 

 ez pψμ ρ φ
ξ

α∂
= + +

∂
, (41) 

 ( )( ) ( ) ( )
0 0/ sgn

nk kν ν τ σ τ= k ,     0 0ν > , (42) 

 ( )( ) kk

k
h

h
ψτ ν ρ ∂

≥
∂∑ . (43) 

Above,  is the diffusivity, abd ( ) ( )( ) k kk ab
a bs mτ σ=  is the resolved shear stress on slip system k, 

0ν  is a reference shearing rate, n denotes rate hardening, and 0σ  is the slip resistance.  The 
notation sgn /x x x= . 
 
Proof.  Expanding the internal energy rate using (36) gives 

 ( ) E a
abE a

ab

P h
P h

ψ ψ ψ ψ ψρ ψ θη ρ γ ρ ρ ξ ρ ρ η θ
γ ξ
∂ ∂ ∂ ∂ ∂⎛+ = + + + + +⎜∂ ∂ ∂ ∂ ∂⎝ ⎠θ

⎞
⎟ , (44) 

from which assuming that  for purely thermal processes gives (39).  Expanding the 
electric field energy by using Eq. (29), 

0Ω =

 

 .0
,ˆ

2
a a a b a

a a a b a
d b

bE E dv E P dv dv u dv n u ds
dt

ε φρ Σ Σ⎛ ⎞ − + + −⎜ ⎟
⎝ ⎠∫ ∫ ∫ ∫ ∫= , (45) 

where the divergence of the Maxwell stress [9, 30], 

 ( ).
, , , 0ˆ / 2b b b c b

a b ab a a c a bP E D E EΣ φ φ ρ ε δ= − − = − , , (46) 

as well as the value of the stress itself, abΣ , are both set to zero henceforth by the assumption 
of small electrostatic terms.  The net dissipation of (34) then becomes 
 

 
, ...

.

a a E
a a abE

ab

a
a a

t u ds Q dv dv

E P dv ez dv hdv
P h

ψΦ μ ρ γ
γ

ψ ψρ ρ φ μ ξ ρ
ξ

ψ

∂
= − − −

∂

⎛ ⎞∂ ∂ ∂⎛ ⎞− − + − −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫ ∫

∫ ∫ ∫ ∂

 (47) 
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Expanding the stress power using the divergence theorem, (4), and (5), 
 
 ( ) ( ).,

0

ˆ/ 3a ab ab E P ab E ab P
a b ab ab ab ab abt u ds dv p dvσ σ γ γ αξδ σ γ σ γ αξ= + + + = + −∫ ∫ ∫ , (48) 

where the deviatoric stress ˆ ab ab abpσ σ δ= +  and the hydrostatic pressure .3 a
ap σ− = .  Then 

 
,ˆ ...

.

ab P a
ab a

ab E a
ab aE a

ab

dv Q dv hdv
h

dv E P dv ez p dv
P

ψΦ σ γ μ ρ

ψ ψ ψσ ρ γ ρ ρ φ μ α ξ
γ ξ

∂
= − − +

∂
⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞− − − − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

∫ ∫ ∫

∫ ∫ ∫
 (49) 

The final three volume integrals on the right of (49) vanish when (37), (38), and (41) apply.  
From (40), dissipation is always non-negative from vacancy flux: 
 
 . (50) , , , 0a ab

a a bQ dμ μ μ− = ≥
This leaves the local requirement 

 ˆ 0ab P
ab h

h
ψσ γ ρ ∂

− ≥
∂

. (51) 

From (42), plastic work is always non-negative: 

 ( )( ) ( ) ( )
0 0ˆ / sgn 0

nij P k k k
ij

k

σ γ τ ν τ σ τ=∑ ≥ , (52) 

meaning that the energy storage rate from generation, annihilation, and/or interaction of 
lattice defects, h , cannot exceed the rate of dissipation from dislocation glide, as required by 
(43).  
 
Corollary 3.2  Thermodynamically consistent boundary conditions on bulk vacancy flux, and 
an admissible kinetic equation for surface flux, compatible with Proposition 3.1, are  
 
 ( ) ( ).ˆ / 1i Ea

aiQ n β α ρψ φρ χ γ μ⎡ ⎤= + − − +⎣ ⎦ 0,     ≥ , (53) β

 ( ) ( ). ,
ˆ ˆ / 1 Ea

aq Aα αβ

β
ρψ φρ χ γ⎡ ⎤= − + − −⎣ ⎦ ,    ˆ 0Aαβ ≥ ,    (54) 

assuming that  
 ( )ˆ 0ρψ φρ+ ≥ ,            ( ) ( ). ,

ˆ ˆ / 1 0Ea
aAαβ

βα
ρψ φρ χ γ⎡ ⎤+ − − ≥⎣ ⎦ , (55) 

and subject to the boundary restrictions of constant (in time) charge and electric potential on 
s, and traction-free or quasi-static surface s. 
 
Proof.  The system's total energy rate with a moving boundary is written using (35) and (45): 

 ( ) (ˆ ˆi
i

ddv E P dv dv ds a ez ds
dt

Ω ρ ψ θη φρ σφ ρψ φξ= + − + + + +∫ ∫ ∫ ∫ ∫ ) , (56) 

assuming Maxwell stress    This is expanded using (36) and (48) as 0.abΣ =

(ˆa ab P
a abt u ds dv hdv ez p dv a ez ds

h
ψ ψΩ σ γ ρ ρ φ α ξ ρψ

ξ
⎛ ⎞∂ ∂

= − + + + + + +⎜ ⎟∂ ∂⎝ ⎠
∫ ∫ ∫ ∫ ∫ )φξ . (57) 
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For a traction-free or quasi-static surface, 0a
at u = , and with dissipative plastic work and 

plastic variables, (51) applies.  Then using the divergence theorem,  
 
 ( ),

a a
a aQ n ds Q dv a ez dsΩ − μ μ ρψ φξ= + + +∫ ∫ ∫ . (58) 

Since  the following requirement arises in order to satisfy (34) in the 
absence of external working: 

, , , 0,a ab
a aQ dμ μ μ= − ≤b

n ( )ˆ 0a
aa Qρψ φρ μ+ − ≤ . (59) 

Substituting from mass conservation requirement (10) gives 

 ( ) ( ) ( ) ( ). , .ˆ ˆ/ 1 / 1 0a Ea
a aQ n qα

αα ρψ φρ χ γ μ ρψ φρ χ γ⎡ ⎤− + − − + + + − −⎣ ⎦
Ea
a ≤ . (60) 

Then, from (53),   

 ( ) ( ) ( ) ( ) 2

. .ˆ ˆ/ 1 / 1 0a Ea
a a aQ n α ρψ φρ χ γ μ β α ρψ φρ χ γ μ⎡ ⎤ ⎡ ⎤− + − − + = − + − − + ≤⎣ ⎦ ⎣ ⎦

Ea

≤

1

. (61) 

Finally, from (54) and (55), the following inequality remains: 

  (62) 
( ) ( )

( ) ( ) ( ) ( )
., .

. .,

ˆ / 1

ˆ ˆ ˆ            / 1 / 1 0.

Ea
a

Ea Ea
a a

q

A

α
α

αβ

βα

ρψ φρ χ γ

ρψ φρ χ γ ρψ φρ χ γ

+ − − =

⎡ ⎤− + − − + − −⎣ ⎦

Remark.  Since 0 χ≤ < , (55) and (62) suggest that the sum of the free energy per unit 
volume and electrostatic energy per unit volume should be non-negative and convex when 
elastic volume changes are small. 
 
4.  CONSTITUTIVE FUNCTIONS FOR PIEZOELECTRICS AND DIELECTRICS 

 The following more specific form of (36) is proposed for single crystalline 
electromechanical solids, in the absence of phase changes or spontaneous polarization: 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )..1/ 2 1 1/ 2 ,abcd E E a b ab E c

ab cab cd abP P P hρψ αξ γ γ Λ Δ γ ϕ ξ θ= − + + + +

E

, (63) 
 
where  and  are, respectively, the anisotropic elastic moduli and inverse dielectric 
susceptibility, and  are piezoelectric constants.  For a dielectric material such as BST in the 
paraelectric state [3, 13], , and (2), (37), and (38) lead to 

Λ
Δ

.. 0ab
cΔ =

 
 , (64) 0

a ab
R bD ε ε=

 ( ) ( )1ab abcd E
cdσ χ γ= − , (65) 

 b
a abE PΛ= , (66) 

with 1 1
0

ab ab ab
Rε δ ε Λ− −= +  the relative permittivity.  For a piezoelectric material such as pure α-

quartz,   
 ( )0

a ab abc
R b bcD E Eε ε Π γ= − , (67) 

 ( ) ( ) ..1ab abcd E ab c
ccd Pσ χ γ= − + Δ , (68) 

 ( )..
b bc E

a ab a bcE PΛ Δ γ= + , (69) 
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where .  The scalar function 1
..

abc ad bc
dΠ Λ Δ−= ϕ  is assumed to follow the universal relation for 

the chemical potential of an ideal mixture [13, 34]: 
  
 ( )( )0 ˆ ˆlnA T A BN N G N k vϕ θ θ= + ν , (70) 

where  is Avagadro's number,  is Boltzmann's constant, AN Bk 1/TN α=  is the number of 
atomic sites per unit volume, ˆ / Tv Nξ=  is the mole fraction of vacancies, and ( )0G θ  is the 
bulk Gibbs free energy of the unstressed, defect-free crystal.  Note that for constant 
temperature applications, each atom (or missing atom) occupies a fixed reference volume, 
such that 1/TN α=  and v̂ χ= .   From (41), the chemical potential for vacancy diffusion is 
then 
 ( ) ( ) ( ) ( ) ( ) ( )1 ln 1 / 3 1/ 2abc E abcd E E

B a bc ab cdk ezμ θ χ φ α χ γ γ γ⎡ ⎤= + + − − +⎣ ⎦ . (71) 

The kinetic equation for bulk flux follows from (40) as 

 ( )
( ) ( )( ) ( ) ( ), ,, ,

1
3

a ab edc E edc E efcd E EB
b b e e bdc b dc ef cd b

kQ d ezE
α χθ χ γ γ χ α γ

χ
−⎡ ⎤

= − + − +⎢ ⎥
⎣ ⎦

γ . (72) 

Consider now a one-dimensional reduction of (72), where uniaxial strain conditions hold for 
the x-direction, i.e. ( )1 Eσ χ γ= − , where  is an elastic constant: 
 

 ( ) ( )1
/ 1 3

3

E
E EBk dd dQ d ezE

dx dx dx
α χθ γχ χγ γ

χ
− ⎛ ⎞

= − + + −⎜
⎝ ⎠

⎟ . (73) 

This can also be written as follows, neglecting terms of second order in elastic strain and 
porosity: 

 [ ] ( )( )2/
3

E
EBk d d dQ d ez

dx dx dx
α γ θ χ φ α χ γ

χ
⎡ ⎤

1 1 3 p⎡ ⎤= − + − − − +⎢ ⎥ ⎣ ⎦⎣ ⎦
, (74) 

where the first term on the right causes vacancies to move to areas of lower concentration, the 
second term causes charged vacancies to move to areas of lower electric potential, and the 
third term accounts for the elastic strain energy density, causing vacancies to move to areas of 
lower hydrostatic pressure.  While the final term vanishes under static stress equilibrium in 
the one dimensional case (i.e., the first of (26) gives /dp dx 0= ), analogous terms containing 
stress or pressure gradients do not generally vanish in the three dimensional Eq. (72). 
 
5.  CONCLUSIONS 

 A continuum framework for the electromechanical behavior of dielectric and 
piezoelectric solids has been developed.  The kinematic description accounts for the 
contributions of dislocations, disclinations (i.e., domain walls), and point defects to covariant 
derivatives and discontinuities in the field of lattice director vectors on their spatial manifold.  
Thermodynamically admissible relationships for recoverable elasticity, polarization, 
dislocation glide, and bulk and surface diffusion of charged vacancies have been derived.  
Specific constitutive functions have been postulated for dielectric and piezoelectric single 
crystals, with particular emphasis given to the form of the governing equation for bulk 
diffusion kinetics. 
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